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1 Introduction

One of the long-standing unsolved problems in discussions of supersymmetrical theories

is the notorious “off-shell problem.” It is meant by this term that for a given set of

propagating fields, there is currently no generally known prescription for how to augment

this set with an additional finite number of fields (called “auxiliary fields”) such that the

algebra (see the appendix for the conventions used in this work)

{Q
I

a , Q
J

b } = i 2 δ
I J

(γµ)a b ∂µ , (1.1)
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is satisfied for ‘supercharges’ Qa that act non-trivially on both the propagating and auxil-

iary fields. They should act in such a way so as to not impose any particular dynamical

equations on the propagating fields nor the auxiliary ones. Multiplets of both propagating

and auxiliary fields that satisfy (1.1) and the conditions in the previous sentence are called

“off-shell representations.” Though the corresponding problem without auxiliary fields has

long been resolved (see for example [1]), finding all such sets of fields in the off-shell case

has been an unsolved problem since the birth of supersymmetry.

There is a general belief that this is an ‘impossible’ problem to solve. A widely accepted

no-go theorem [2] has been derived that would seem to preclude the existence of such

off-shell representations for a large class of interesting theories such as the 4D, N = 2

Hypermultiplet [3], 4D, N = 4 SUSY YM theory [4] and all 10D supersymmetrical theories

that emerge as the low-energy zero-slope limits of superstring theories [5].

Two approaches have arisen to surmount the “off-shell problem.” One of these is known

as the ‘harmonic superspace’ approach [6] and the other is referred to as ‘projective super-

space’ approach [7]. At the time of their creation, each approach seemed distinct but with

the common feature of providing an off-shell description of the Hypermultiplet at the ex-

pense of using an infinite number of auxiliary fields. In the language of harmonic superspace

the Hypermultiplet is known as the ‘q-hypermultiplet.’ Correspondingly, in the language

of projective superspace the Hypermultiplet is known as the ‘polar-hypermultiplet.’

Differences in the two approaches do exist. One of the most pointed is that only

within the projective superspace approach is it possible to easily define a 4D, N = 1

superfield truncation. However, there has been presented a proof [8] that any action in

the harmonic superspace approach maybe engineered to yield an equivalent projective

superspace formulation.

Though both of these two powerful methods have a long list of accomplishments to

recommend them, it has long been the opinion of one of the authors (SJG) that these

cannot represent the ‘final’ answer to the off-shell problem. One indication of this is the

fact that though these infinite auxiliary-field extended technologies work, they only do so

in a limited domain of theories. To our knowledge, neither of the methods has allowed

a significant breakthrough for either 4D, N = 4 SUSY YM theory nor any of the 10D

supersymmetrical theories mentioned above. A final answer must deal with these cases

also. In our opinion, to reach such a goal requires new tools and a new perspective.

For some time now, we have been developing two interlocking approaches in the effort

to make progress on this problem. The first of these approaches [9, 10] involves what we

refer to as the GR(d, N ) Algebra (or ‘Garden Algebra’) approach. Garden Algebras are

real versions of Clifford Algebras that seem to provide the basic building blocks of a rig-

orous theory of representations for space-time SUSY. Our second approach is based on a

set of diagrams we have named ‘Adinkras’ [11]. An Adinkra is essentially a weight space

diagram (as is known for compact Lie algebras) but with the added feature of including

the orbits of the distinct generators as they act on the states of any SUSY representation.

Adinkras provide convenient graphical representations of Garden Algebras. A growing

body of literature on these topics is being developed by a collaboration of computer scien-

tists, mathematicians and theoretical physicists (the DFGHILM collaboration).

– 2 –
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Some of this work has already uncovered unexpected relations between a classification

of SUSY reps and graph theory [11], Filtered Clifford Algebras [12], graphical topology [13],

and self-dual error-correcting codes [14] on the mathematics side. Alternately there has

been presented a new off-shell 4D, N = 2 hypermultiplet (the ‘hyperplet’) [15], new mod-

els for supersymmetrical quantum systems [16], and the first prepotential description of

models [17] with an arbitrary degree of N -extended SUSY on the physics side.

One of the current activities of the DFGHILM collaboration is the construction of a

classification of supersymmetry representations up to and including N = 32 systems. In the

effort there is (what apparently seems to be) an incredible profusion of representations. So

much so that we have been struck by the analogy with the problem of classifying genomes in

biological systems. Building on this analogy, we have chosen to include the word ‘genomics’

in the title of this paper.

Although the work of [10] described a method (reduction on a 0-brane) by which

the Adinkra/Garden Algebra description (the ‘genetic description) of a supersymmetric

representation can be uncovered, there has not to this point been a detailed presentation

applying this technique to well-known 4D, N = 1 systems more generally. In the following,

we will obtain the genetic description of;

(a.) the off-shell and on-shell chiral multiplet,

(b.) the off-shell tensor multiplet,

(c.) the on-shell double-tensor multiplet, and

(d.) the off-shell and on-shell vector multiplet.

In a separate, but companion work, the complex linear multiplet and some other topics

will be treated.

The structure of this work is as follows.

In section 2, reviews are given of the 4D, N = 1 chiral, tensor, double tensor, and

vector supermultiplets. This is mostly done to establish our notational conventions. In

section 3, new results are presented. We carry out the reduction on a 0-brane of the

4D, N = 1 supermultiplets discussed in the previous section. This truncation leads to

1D, N = 4 supersymmetrical shadows and allows us to present an explicit derivation of

the Garden Algebra matrices associated with these distinct multiplets. Though in the

work of [10] it was stated that this procedure always leads to the discovery of the Garden

Algebras matrices associated with each supersymmetric representation, the current work

marks the first time this has been explicitly demonstrated for these familiar 4D, N = 1

supermultiplets beyond the chiral multiplet. The work in section 4 is devoted to studying

properties of the matrices associated with each of the multiplets. It is shown that (as

expected) all the off-shell theories belong to a universal class of algebras. . . the Garden

Algebras. On the other hand, the matrices associated with the on-shell theories do not

possess features that lead to a universal identification. Thus the mathematical basis for

understanding these in the context of matrix representation requires much more study.

However, it is shown that there is one sharp distinction that can be made between ‘generic’

– 3 –
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on-shell theories and ‘pathogenic’ on-shell theories. A definition is given for when two sets

of Garden Algebra matrices are members of an equivalence class. Traces of the Garden

Algebra matrices that respect this definition of equivalence are defined. Evidence is shown

to support the proposal that the superspin of the 4D multiplets are encoded in the Garden

Algebra and the initial steps toward defining characters are taken. A quantity, denoted by

χ
0
, is proposed as an actual character for the representations. The fifth section explores

the construction of the Adinkras associated with each multiplet. By comparing the case

of the chiral multiplet with the vector multiplet, it is shown what property of the Adinkra

can be associated with χ
0
. We give our conclusions in section six. At the end there are

three appendices describing conventions, aspects of the structure we call GR(dL, dR, N ),

and a primer of Adinkra manipulation.

In closing this section, let us make a clear statement as what is and what is not the

goal of this work. It is not a goal here to solve the problem of off-shell formulations of

supersymmetric field theories in higher dimensions. The goal of the present work is much

more modest. By applying simple 4D → 1D reduction (called “reduction on the 0-brane”)

we want to study the explicit results for a number of familiar 4D N = 1 multiplets when

by reduction, they are injected into the ‘sea’ of 1D representations that was discovered in

the work of [9].

As was pointed out in [11], the number of representations in 1D (for a fixed number of

supercharges) is enormously larger than those that arise as reductions of representations

from higher dimensions. This raises the question of what distinguishes the generic 1D

representations from those that are connected to higher D ones? As there is no over-arching

theoretical guide for answering this question, it is paramount to know what are the explicit

1D representations that result from reduction. In a sense it is necessary to do a ‘genomic

scan’ (i.e. to find the associated Adinkras and ‘root superfield representations’ [10]) of the

reduced representations in order to compare these with generic 1D representations. We

have chosen for this arena of study the 4D, N = 1 theories.

We should point out that this current paper fills a hole in this line of investigations.

With the exception of the work of [10], the DFGHILM collaboration has not produced

works looking at the actual injection of higher dimensional multiplets into 1D. The work

of the collaboration has been largely been directed to developing a firm mathematical

background and understanding of the 1D theory. As a consequence, a number of results of

this paper have not been seen previously and this paper is complementary to the general

line of DFGHILM works.

2 Review of some 4D, N = 1 multiplets

In each of the following subsections, a supersymmetric multiplet is presented in terms of

its field content and supersymmetry transformation laws. Presentations are given for three

off-shell multiplets as well as three on-shell multiplets.

– 4 –
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2.1 Review of the 4D, N = 1 Chiral Multiplet

The 4D, N = 1 chiral multiplet is very well known to consist of a scalar A, a pseudoscalar

B, a Majorana fermion ψa, a scalar auxiliary field F , and a pseudoscalar auxiliary field

G. A convenient way to express the supersymmetry variation of these component fields

is by first regarding them as the lowest component of a superfield (denoted by the same

symbol) and then expressing the action of the superspace covariant derivative Da acting

on each. As we have included the auxiliary fields F and G, necessarily it is the off-shell

theory under consideration.

The supersymmetry variations can be cast into the form of a set of specifications of the

superspace ‘covariant derivative’ acting on a set of superfields. We have in our conventions

DaA = ψa ,

DaB = i (γ5)a
b ψb ,

Daψb = i (γµ)a b ∂µA − (γ5γµ)a b ∂µB − i Ca b F + (γ5)a bG ,

DaF = (γµ)a
b ∂µ ψb ,

DaG = i (γ5γµ)a
b ∂µ ψb .

(2.1)

A direct calculation shows that

{ Da , Db }A = i 2 (γµ)a b ∂µA , { Da , Db }B = i 2 (γµ)a b ∂µB ,

{ Da , Db }ψc = i 2 (γµ)a b ∂µ ψc ,

{ Da , Db }F = i 2 (γµ)a b ∂µ F , { Da , Db }G = i 2 (γµ)a b ∂µG .

(2.2)

As expected, the algebra of (1.1) is satisfied independently of the field upon which it is

evaluated.

The simplest version of the on-shell theory occurs by simply setting F = G = 0 in (2.1)

and (2.2). Thus (2.1) is replaced by

DaA = ψa ,

DaB = i (γ5)a
b ψb ,

Daψb = i (γµ)a b ∂µA − (γ5γµ)a b ∂µB .

(2.3)

Using (2.3), a direct calculation shows that

{ Da , Db }A = i 2 (γµ)a b ∂µA , { Da , Db }B = i 2 (γµ)a b ∂µB ,

{ Da , Db }ψc = i 2 (γµ)a b ∂µ ψc − i (γµ)a b (γµγ
ν)c

d∂ν ψd .
(2.4)

The first two of these equations have the same form as (1.1) in the case where N = 1.

However, the third term immediately above can be expressed as

{ Da , Db }ψc = i 2 (γµ)a b ∂µ ψc + i 2 (γµ)a b (γµ)c
dKd(ψ) ,

Kc(ψ) = −
1

2
(γν)c

d∂ν ψd ,
(2.5)

– 5 –
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where Kc measures the ‘non-closure’ of the algebra. It is also seen that the relations

Kc(ψ) = −
1

2
DcF , Kc(ψ) = i

1

2
(γ5)c

d DdG (2.6)

are satisfied. This is important for the consistency of the truncation in (2.4) with regard

to the starting point in (2.2). If we set F = G = 0 in (2.2) then it is consistent to set Kc

= 0 in (2.4)–(2.6).

This is the essence of the “Off-Shell Problem.” Namely, if we begin only knowing (2.3),

how would we systematically go about finding out that it is required to add F and G as

in (2.1)? A related question is, “Is the addition of F and G unique?” (The answer to

this second question is known to be, “No.” This will be discussed in a companion work to

accompany this paper.)

2.2 Review of the 4D, N = 1 Tensor Multiplet

The 4D, N = 1 tensor multiplet consists of a scalar ϕ, a second-rank skew symmetric

tensor, Bµ ν , and a Majorana fermion χa. Their supersymmetry variations can be cast in

the forms
Daϕ = χa ,

DaBµ ν = −
1

4
([ γµ , γν ])a

b χb ,

Daχb = i (γµ)a b ∂µϕ − (γ5γµ)a b ǫµ
ρ σ τ∂ρBσ τ .

(2.7)

The commutator algebra for the D-operator calculated from (2.7) takes the form

{ Da , Db }ϕ = i 2 (γµ)a b ∂µ ϕ ,

{ Da , Db }Bµ ν = i 2 (γρ)a b ∂ρBµ ν + ∂µ qν a b − ∂ν qµ a b ,

{ Da , Db }χc = i 2 (γµ)a b ∂µ χc , qµ a b ≡ i 2 (γν)a b

[
Bµ ν +

1

2
ηµ ν ϕ

]
.

(2.8)

The second line in (2.8) is interesting. On a first glance, it appears that the two final

q-dependent parts are ‘non-closure’ terms as seen in the on-shell chiral multiplet. Let us

multiply the middle line of (2.8) by parameters ǫa1 and ǫb2 to obtain

ǫa1 ǫ
b
2 { Da , Db }Bµ ν = i 2 ǫa1 ǫ

b
2 (γρ)a b ∂ρBµ ν + ∂µ vν − ∂ν vµ

where vµ ≡ i 2 ǫa1 ǫ
b
2 (γν)a b

[
Bµ ν +

1

2
ηµ ν ϕ

]
.

(2.9)

Since Bµν is anti-symmetric, it is possible to define a ‘gauge’ variation denoted by δ
(2)
G (ℓ)

that acts upon it according to

δ
(2)
G (ℓ)Bµ ν = ∂µ ℓν − ∂ν ℓµ , (2.10)

and if we identify ℓµ = vµ, then (2.9) may be expressed as

ǫa1 ǫ
b
2 { Da , Db }Bµ ν = i 2 ǫa1 ǫ

b
2 (γρ)a b ∂ρBµν + δ

(2)
G (v)Bµ ν

≡ ξρ∂ρBµν + δ
(2)
G (v)Bµ ν .

(2.11)

– 6 –
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These equations inform us that any theory possessing the symmetries described by (2.7)

must also possess the symmetries described on the r.h.s. (right hand side) of (2.11). The

first of these is simple translation symmetry. The second is identifiable as the gauge

symmetry of an anti-symmetric rank two tensor field. Finally, we observe that there are

no Lorentz-covariant truncations of the fields in the tensor multiplet. So it is not possible

to define an ‘on-shell’ version of this multiplet as it was with the chiral multiplet.

2.3 4D, N = 1 Double Tensor Multiplet

Though little known, the 4D, N = 1 “double tensor” multiplet is quite old [18]. To motivate

the consideration of this multiplet, it is useful to compare (2.3) with (2.7), looking for

differences and similarities. Immediately, one glaring difference is that the pseudoscalar

field B in the chiral multiplet is replaced by the 2-form Bµ ν in the tensor multiplet.

This obviously motivates the query, “What would occur if both A and B were replaced

by 2-forms?” The 4D, N = 1 double tensor multiplet consists of two second-rank skew

symmetric tensors Xµ ν and Y µ ν along with a Majorana fermion Λa. Thus we arrive at

the double tensor multiplet with supersymmetry variations taking the forms

DaXµ ν = i
1

4
(γ5[ γµ , γν ])a

b Λb ,

DaY µ ν = −
1

4
([ γµ , γν ])a

b Λb ,

DaΛb = i (γµ)a b ǫµ
ρ σ τ∂ρXσ τ − (γ5γµ)a b ǫµ

ρ σ τ∂ρY σ τ .

(2.12)

Upon comparing (2.4) with (2.12), it is clear that the first two equations in the former will

become the first two equations of the latter if we perform the replacements

A → Xµ ν , B → Y µ ν , ψa → i
1

4
(γ5[ γµ , γν ])a

b Λb . (2.13)

Curiously though, if the replacements in (2.13) are inserted into the final line in (2.4), we

obtain

DaΛb = i
1

6
(γµ)a b [ ǫµ

ρ σ τ ∂ρXσ τ − 2 ∂νY µ ν ]

+
1

6
(γ5γµ)a b [ ǫµ

ρ σ τ ∂ρY σ τ + 2 ∂νXµ ν ] .

(2.14)

which is not the same as the final line in (2.12). In any event we next use (2.12) to

calculate the anti-commutator of the D-operator as realized on the fields of the double

tensor multiplet and find

{ Da , Db }Xµ ν = i 2 (γρ)a b ∂ρXµ ν + ∂µ sν a b − ∂ν sµ a b

− i [ ηα µ (γν)a b − ηα ν (γµ)a b ] ǫα ρ σ τ∂ρY σ τ ,

{ Da , Db }Y µ ν = i 2 (γρ)a b ∂ρ Y µ ν + ∂µ tν a b − ∂ν tµ a b

+ i [ ηα µ (γν)a b − ηα ν (γµ)a b ] ǫα ρ σ τ∂ρXσ τ ,

sµ a b ≡ i 2 (γν)a bXµ ν , tµ a b ≡ i 2 (γν)a b Y µ ν ,

{ Da , Db }Λc = i 2 (γµ)a b ∂µ Λc + i (γµ)a b (γµ γ
ν)c

d ∂ν Λd .

(2.15)

– 7 –
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We can begin our analysis of (16) by concentrating on the anticommutator as realized

on the fermion Λa. Similar to (6), we can write

{ Da , Db }Λc = i 2 (γµ)a b ∂µ Λc + i 2 (γµ)a b (γµ)c
dK̃d(Λ) ,

K̃c(Λ) =
1

2
(γν)c

d∂ν Λd .
(2.16)

and we see the emergence of a non-closure function K̃c(Λ) as in the case of the on-shell chiral

multiplet. This equation proves that the double tensor multiplet is an on-shell construction

and no finite set of auxiliary fields is known to alleviate this.

The forms of the anticommutator as realized on Xµ ν and Y µ ν reveal that any theory

with the symmetries described by (2.12) must also possess translation symmetry and the

gauge symmetries for both two-form fields. However, the last term of the first equation

and the last term in the second equation in (16) also imply something new. These theories

must also possess a symmetry under a ‘Killing vector’ of the form

δZ = − i2 ξµ ǫν
ρ σ τ

[
(∂ρY σ τ )

∂

∂Xµν
− (∂ρXσ τ )

∂

∂Y µν

]
. (2.17)

Since bosons typically satisfy second order differential equations of motion, this term

(known as a ‘central charge’) cannot be interpreted as a non-closure term that vanishes

upon use of the equations of motion. In fact, this is a ‘on-shell central charge,’ meaning

that is has a non-trivial effect on the fields even when the theory obeys its equations of

motion.

2.4 Review of 4D, N = 1 Vector Multiplet

The 4D, N = 1 vector multiplet off-shell is described by a vector Aµ, a Majorana fermion

λa, and a pseudoscalar auxiliary field d. Their supersymmetry variations are described by

Da Aµ = (γµ)a
b λb ,

Daλb = − i
1

4
([ γµ , γν ])ab ( ∂µAν − ∂ν Aµ ) + (γ5)a b d ,

Da d = i (γ5γµ)a
b ∂µλb .

(2.18)

These lead in a straightforward manner to the following anticommutator algebra.

{ Da , Db }Aµ = i 2 (γρ)a b ∂ρAµ − ∂µ ra b , ra b ≡ i 2 (γν)a bAν ,

{ Da , Db }λc = i 2 (γµ)a b ∂µ λc ,

{ Da , Db }d = i 2 (γµ)a b ∂µ d .

(2.19)

The term involving rab implies that any theory involving the vector gauge field above must

also admit a symmetry of the form

δ
(1)
G (α)Aµ = ∂µα , (2.20)

– 8 –
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which is easily identifiable as the usual form of a spin-1 gauge transformation.

In the on-shell theory, we set d = 0 but retain all other terms in (2.18)

DaAµ = (γµ)a
b λb ,

Daλb = − i
1

4
([ γµ , γν ])ab ( ∂µ Aν − ∂ν Aµ ) ,

(2.21)

and once again we calculate the anticommutator as realized on the remaining fields to find

{ Da , Db }Aµ = i 2 (γρ)a b ∂ρAµ − ∂µ ra b , ra b ≡ i 2 (γν)a bAν ,

{ Da , Db }λc = i 2 (γµ)a b ∂µ λc − i
1

2
(γµ)a b (γµγ

ν)c
d ∂ν λd

+ i
1

16
([ γα , γβ ])a b ([ γα , γβ ]γν)c

d ∂ν λd .

(2.22)

The final equation of (2.22) shows the presence of two non-closure terms. We may rewrite

the final line as

{ Da , Db }λc = i 2 (γµ)a b ∂µ λc + i2 (γµ)a b (γµ)c
d K̂d(λ)

− i
1

4
([ γα , γβ ])a b ([ γα , γβ ])c

d K̂d(λ) ,

K̂c(λ) ≡ −
1

4
(γν)c

d ∂ν λd = i
1

4
(γ5)c

dDdd ,

(2.23)

where the non-closure term K̂c(λ) is introduced. Once more, it is seen to be consistent to

set d = 0 if the non-closure term vanishes, i.e. the fermion obeys an equation of motion.

3 Garden algebra matrices from 0-brane reduction

The four previous sections have presented a review of well known results. In this section,

we will undertake to uncover the form of the Garden Algebra matrices associated with

each supermultiplet previously discussed. According to the technique proposed in [10]

this goal can be achieved by first performing a toroidal compactification of any higher D

supersymmetircal multiplet on a 0-brane and thus retain only the temporal dependence of

all fields in the supermultiplet.

3.1 4D, N = 1 chiral multiplet on the 0-brane

The supersymmetry transformation laws in (2.1) are generally valid independent of the

coordinate dependence of the various functions that appear in the equations. These equa-

tions remain valid if we restrict the functions so that they remain dependent only on the

τ -coordinate. Under this restriction these equations can be recast in the form

D1A = ψ1 D2A = ψ2 D3A = ψ3 D4A = ψ4

D1B = −ψ4 D2B = ψ3 D3B = −ψ2 D4B = ψ1

D1F = ∂0ψ2 D2F = −∂0ψ1 D3F = −∂0ψ4 D4F = ∂0ψ3

D1G = − ∂0ψ3 D2G = −∂0ψ4 D3G = ∂0ψ1 D4G = ∂0ψ2 .

(3.1)
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Next a set of re-definitions can be carried out on the fermions according to

ψ1 → iΨ1 , ψ2 → iΨ2 , ψ3 → iΨ3 , ψ4 → iΨ4 , (3.2)

so the previous equations take the forms of

D1A = iΨ1 D2A = iΨ2 D3A = iΨ3 D4A = iΨ4

D1B = − iΨ4 D2B = iΨ3 D3B = −iΨ2 D4B = iΨ1

D1F = i ∂0Ψ2 D2F = −i∂0 Ψ1 D3F = −i∂0 Ψ4 D4F = i∂0 Ψ3

D1G = − i∂0Ψ3 D2G = −i∂0 Ψ4 D3G = i∂0 Ψ1 D4G = i∂0 Ψ2 .

(3.3)

Now we define

Φ1 = A , Φ2 = B , ∂0Φ3 = F , ∂0Φ4 = G , (3.4)

and note the above system of equations can be written in the form

D
I
Φi = i (L

I
)

i k̂
Ψ

k̂
. (3.5)

The explicit form of the L-matrices that appear here are given by

(L1) i k̂
=




1 0 0 0

0 0 0 − 1

0 1 0 0

0 0 − 1 0


 , (L2) i k̂

=




0 1 0 0

0 0 1 0

− 1 0 0 0

0 0 0 − 1


 ,

(L3) i k̂
=




0 0 1 0

0 − 1 0 0

0 0 0 − 1

1 0 0 0


 , (L4) i k̂

=




0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0


 . (3.6)

After writing the results for the fermions we find

D1Ψ1 = ∂0A D2Ψ1 = −F D3Ψ1 = G D4Ψ1 = ∂0B

D1Ψ2 = F D2Ψ2 = ∂0A D3Ψ2 = −∂0B D4Ψ2 = G

D1Ψ3 = −G D2Ψ3 = ∂0B D3Ψ3 = ∂0A D4Ψ3 = F

D1Ψ4 = −∂0B D2Ψ4 = −G D3Ψ4 = −F D4Ψ4 = ∂0A .

(3.7)

Once more we use the definitions in (3.4) and note that the above system of equations can

be written in the form

D
I
Ψ

k̂
= (R

I
)

k̂ i

d

dt
Φi . (3.8)

The explicit form of the matrices that appear here are given by

(R1) i k̂
=




1 0 0 0

0 0 1 0

0 0 0 − 1

0 −1 0 0


 , (R2) i k̂

=




0 0 − 1 0

1 0 0 0

0 1 0 0

0 0 0 − 1


 ,
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(R3) i k̂
=




0 0 0 1

0 − 1 0 0

1 0 0 0

0 0 −1 0


 , (R4) i k̂

=




0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0


 . (3.9)

It is now seen that the set of L-matrices (3.6) and R-matrices (3.9) satisfy the equation

(R
I
) ≡ [ (L

I
) ] t (3.10)

where the t superscript stands for transposition.

We now turn our attention to the on-shell case. This begins by setting F = G = 0.

The consistency of these conditions implies ∂0ψk̂
= ∂2

0A = ∂2
0B = 0. Further consistency

conditions imply that Φi be defined by

Φ1 = A , Φ2 = B , (3.11)

while Ψ
k̂

is still defined by (3.2). In these considerations of the on-shell theory, (3.5)

and (3.7) are still valid. However, the definition of the L-matrices and R-matrices must

now be changed to

(L1) i k̂
=

[
1 0 0 0

0 0 0 − 1

]
, (L2) i k̂

=

[
0 1 0 0

0 0 1 0

]
,

(L3) i k̂
=

[
0 0 1 0

0 − 1 0 0

]
, (L4) i k̂

=

[
0 0 0 1

1 0 0 0

]
, (3.12)

(R1) i k̂
=




1 0

0 0

0 0

0 −1


 , (R2) i k̂

=




0 0

1 0

0 1

0 0


 ,

(R3) i k̂
=




0 0

0 − 1

1 0

0 0


 , (R4) i k̂

=




0 1

0 0

0 0

1 0


 . (3.13)

3.2 4D, N = 1 tensor multiplet on the 0-brane

We now repeat the process of the last subsection. However, we now take as our starting

point the results in (2.7). Carrying out the reduction yields the following for the bosons

D1φ = χ1 D2φ = χ2 D3φ = χ3 D4φ = χ4

2D1B12 = −χ3 2D2B12 = χ4 2D3B12 = χ1 2D4B12 = −χ2

2D1B23 = −χ4 2D2B23 = −χ3 2D3B23 = χ2 2D4B23 = χ1

2D1B31 = −χ2 2D2B31 = χ1 2D3B31 = −χ4 2D4B31 = χ3 ,

(3.14)

and for the fermions the analogous results,

D1χ1 = i∂0φ D2χ1 = i2∂0B31 D3χ1 = i2∂0B12 D4χ1 = i2∂0B23

D1χ2 = −i2∂0B31 D2χ2 = i∂0φ D3χ2 = i2∂0B23 D4χ2 = −i2∂0B12

D1χ3 = −2∂0B12 D2χ3 = −2∂0B23 D3χ3 = i∂0φ D4χ3 = i2∂0B31

D1χ4 = −i2∂0B23 D2χ4 = i2∂0B12 D3χ4 = −i2∂0B31 D4χ4 = i∂0φ

. (3.15)
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Next the fermions are re-defined according to

χ1 → iΨ1 , χ2 → iΨ2 , χ3 → iΨ3 , χ4 → iΨ4 (3.16)

and the bosons are re-defined according to

Φ1 = φ , Φ2 = 2B12 , Φ3 = 2B23 , Φ4 = 2B31 , (3.17)

so the above system of equations ((3.14) and (3.15)) respectively can be written in the

forms

D
I
Φi = i (L

I
)

i k̂
Ψ

k̂
, D

I
Ψ

k̂
= (R

I
)

k̂ i

d

dt
Φi (3.18)

where the explicit form of the L-matrices that appear here are given by

(L1) i k̂
=




1 0 0 0

0 0 − 1 0

0 0 0 − 1

0 − 1 0 0


 , (L2) i k̂

=




0 1 0 0

0 0 0 1

0 0 − 1 0

1 0 0 0


 ,

(L3) i k̂
=




0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 − 1


 , (L4) i k̂

=




0 0 0 1

0 − 1 0 0

1 0 0 0

0 0 1 0


 , (3.19)

and

(R1) i k̂
=




1 0 0 0

0 0 0 − 1

0 − 1 0 0

0 0 − 1 0


 , (R2) i k̂

=




0 0 0 1

1 0 0 0

0 0 − 1 0

0 1 0 0


 ,

(R3) i k̂
=




0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 − 1


 , (R4) i k̂

=




0 0 1 0

0 − 1 0 0

0 0 0 1

1 0 0 0


 . (3.20)

There is also another feature that is noticable from (2.7). It is clear that we also obtain

D1B0 1 =
1

2
χ1 , D1B0 2 =

1

2
χ3 , D1B0 3 =

1

2
χ2

D2B0 1 =
1

2
χ2 , D2B0 2 =

1

2
χ4 , D2B0 3 =

1

2
χ2

D2B0 1 = −
1

2
χ3 , D3B0 2 =

1

2
χ1 , D3B0 3 = −

1

2
χ4

D4B0 1 = −
1

2
χ4 , D4B0 2 =

1

2
χ2 , D4B0 3 = −

1

2
χ3 ,

(3.21)

in addition to the results in (3.14). However, on the right hand side of the equations

in (3.15) there are no appearances of terms that depend on B0 1, B0 2, or B0 3. From (2.10)

it can be seen that

δ
(2)
G B0 1 = ∂0 ℓ1 , δ

(2)
G B0 2 = ∂0 ℓ2 , δ

(2)
G B0 3 = ∂0 ℓ3 (3.22)
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expresses the form of the gauge transformation on the 0-brane. The two equations (3.21)

and (3.22) together imply that:

(a.) the gauge transformations make it possible to choose a gauge where B0 1 = B0 2 =

B0 3 = 0 (ignoring issues related to zero-modes),

(b.) the supersymmetry variations described by (3.21) take one out of this gauge, and

(c.) there exist further gauge transformations that can be used to restore the B0 1 = B0 2

= B0 3 = 0 gauge condition.

So on the 0-brane it is consistent to simply ignore the field components (B0 1, B0 2,

B0 3) and work in a ‘Coulomb gauge’.

3.3 4D, N = 1 Double Tensor Multiplet On The 0-Brane

Starting from (2.12) we find carrying out the reduction for the bosons leads to

D1X12 = −(1
2Λ2) D2X12 = −(1

2Λ1)

D1X23 = +(1
2Λ1) D2X23 = −(1

2Λ2)

D1X31 = +(1
2Λ3) D2X31 = +(1

2Λ4)

D1Y12 = −(1
2Λ3) D2Y12 = +(1

2Λ4)

D1Y23 = −(1
2Λ4) D2Y23 = −(1

2Λ3)

D1Y31 = −(1
2Λ2) D2Y31 = +(1

2Λ1)

(3.23)

D3X12 = +(1
2Λ4) D4X12 = +(1

2Λ3)

D3X23 = −(1
2Λ3) D4X23 = +(1

2Λ2)

D3X31 = +(1
2Λ1) D4X31 = +(1

2Λ2)

D3Y12 = +(1
2Λ1) D4Y12 = −(1

2Λ2)

D3Y23 = +(1
2Λ2) D4Y23 = +(1

2Λ1)

D3Y31 = −(1
2Λ4) D4Y31 = +(1

2Λ3)

(3.24)

and for the fermions

D1 (1
2 Λ1) = +i ∂0X23 D2 (1

2 Λ1) = −i ∂0X12 + i ∂0Y31

D1 (1
2 Λ2) = −i ∂0X12 − i ∂0Y31 D2 (1

2 Λ2) = −i ∂0X23

D1 (1
2 Λ3) = +i ∂0X31 − i ∂0Y12 D2 (1

2 Λ3) = −i ∂0Y23

D1 (1
2 Λ4) = −i ∂0Y23 D2 (1

2 Λ4) = +i ∂0X31 + i ∂0Y12

(3.25)

D3 (1
2 Λ1) = +i ∂0X31 + i ∂0Y12 D4 (1

2 Λ1) = +i ∂0Y23

D3 (1
2 Λ2) = +i ∂0Y23 D4 (1

2 Λ2) = +i ∂0X31 − i ∂0Y12

D3 (1
2 Λ3) = −i ∂0X23 D4 (1

2 Λ3) = +i ∂0X12 + i ∂0Y31

D3 (1
2 Λ4) = +i ∂0X12 − i ∂0Y31 D4 (1

2 Λ4) = +i ∂0X23

. (3.26)

Using the notation:

Φi = (X12, X23, X31, Y12, Y23, Y31) , (3.27)
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and for the fermions

1

2
Λ1 → iΨ1 ,

1

2
Λ2 → iΨ2 ,

1

2
Λ3 → iΨ3 ,

1

2
Λ4 → iΨ4 , (3.28)

the above systems of equations can be written in the form of (3.5) and (3.8). The explicit

form of the matrices that appear here are given by

(L1) i k̂
=




0 −1 0 0

1 0 0 0

0 0 1 0

0 0 − 1 0

0 0 0 − 1

0 − 1 0 0




, (L2) i k̂
=




−1 0 0 0

0 − 1 0 0

0 0 0 1

0 0 0 1

0 0 − 1 0

1 0 0 0




,

(L3) i k̂
=




0 0 0 1

0 0 − 1 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 0 − 1




, (L4) i k̂
=




0 0 1 0

0 0 0 1

0 1 0 0

0 − 1 0 0

1 0 0 0

0 0 1 0




. (3.29)

(R1) i k̂
=




0 1 0 0 0 0

−1 0 0 0 0 −1

0 0 1 − 1 0 0

0 0 0 0 − 1 0


 ,

(R12) i k̂
=




−1 0 0 0 0 1

0 − 1 0 0 0 0

0 0 0 0 − 1 0

0 0 1 1 0 0


 ,

(R3) i k̂
=




0 0 1 1 0 0

0 0 0 0 1 0

0 − 1 0 0 0 0

1 0 0 0 0 −1


 ,

(R4) i k̂
=




0 0 0 0 1 0

0 0 1 − 1 0 0

1 0 0 0 0 1

0 1 0 0 0 0


 . (3.30)

3.4 4D, N = 1 vector multiplet on the 0-brane

Starting from (2.18) we find that carrying out the reduction for the bosons leads to

D1A1 = λ2 D2A1 = λ1 D3A1 = λ4 D4A1 = λ3

D1A2 = −λ4 D2A2 = λ3 D3A2 = λ2 D4A2 = −λ1

D1A3 = λ1 D2A3 = −λ2 D3A3 = λ3 D4A3 = −λ4

D1d = −∂0λ3 D2d = −∂0λ4 D3d = ∂0λ1 D4d = ∂0λ2

(3.31)
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and for the fermions

D1λ1 = i∂0A3 D2λ1 = i∂0A1 D3λ1 = id D4λ1 = −i∂0A2

D1λ2 = i∂0A1 D2λ2 = −i∂0A3 D3λ2 = i∂0A2 D4λ2 = id

D1λ3 = −id D2λ3 = i∂0A2 D3λ3 = i∂0A3 D4λ3 = i∂0A1

D1λ4 = −i∂0A2 D2λ4 = −id D3λ4 = i∂0A1 D4λ4 = −i∂0A3

(3.32)

so these suggest the following identifications for the Φ’s and Ψ’s

λ1 → iΨ1 , λ2 → iΨ2 , λ3 → iΨ3 , λ4 → iΨ4 , (3.33)

Φ1 = A1 , Φ2 = A2 , Φ3 = A3 , ∂0Φ4 = d . (3.34)

We continue as in the previous discussion to define the L-matrices and R-matrices.

Given the equations (3.31)–(3.34) we find the results below for the L-matrices

(L1) i k̂
=




0 1 0 0

0 0 0 − 1

1 0 0 0

0 0 − 1 0


 , (L2) i k̂

=




1 0 0 0

0 0 1 0

0 − 1 0 0

0 0 0 − 1


 ,

(L3) i k̂
=




0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0


 , (L4) i k̂

=




0 0 1 0

− 1 0 0 0

0 0 0 − 1

0 1 0 0


 , (3.35)

and the associated R-matrices are found by the relation in (3.7).

Similarity to the case of the tensor multiplet can also be seen. In addition to the results

in (3.31) we also have

D1A0 = − λ2 , D2A0 = λ1 , D3A0 = λ4 , D4A0 = − λ3 . , (3.36)

Furthermore, there is no appearance of A0 in the equations of (3.32) and there is the gauge

transformation as stated in (2.20). Thus it is consistent to work in the Coulomb gauge

where we set A0 = 0 throughout our considerations of the vector multiplet.

As with the chiral multiplet, it is possible in the case of the vector multiplet to con-

sider the on-shell theory. This begins by setting d = 0. The consistency of these conditions

imply ∂0λk̂
= ∂2

0A1 = ∂2
0A2 = ∂2

0A3 = 0. Further consistency conditions implies that Φi

be defined by

Φ1 = A1 , Φ2 = A2 , Φ3 = A3 , (3.37)

while the Ψ-fermions are still defined by (3.33). Using these definitions, the on-shell vector

multiplet satisfies equations as in (3.18), but with the L-matrices define by

(L1) i k̂
=




0 1 0 0

0 0 0 − 1

1 0 0 0


 , (L2) i k̂

=




1 0 0 0

0 0 1 0

0 − 1 0 0


 ,
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(L3) i k̂
=




0 0 0 1

0 1 0 0

0 0 1 0


 , (L4) i k̂

=




0 0 1 0

− 1 0 0 0

0 0 0 − 1


 , (3.38)

and the R-matrices are found to satisfy (3.10).

3.5 Summary of multiplet reduction on the 0-brane

Earlier in this section, the Garden Algebra matrices associated with four 4D, N = 1

supermultiplets were derived for:

(a.) the off-shell chiral multiplet where the associated L-matrices and R-matrices appear

in (3.6) and (3.9) (case I),

(b.) the on-shell chiral multiplet where the associated L-matrices and R-matrices appear

in (3.12) and (3.13) (case II),

(c.) the off-shell tensor multiplet where the associated L-matrices and R-matrices appear

in (3.19) and (3.20) (case III),

(d.) the double tensor multiplet where the associated L-matrices and R-matrices appear

in (3.29) and (3.30) (case IV ),

(e.) the off-shell vector multiplet where the associated L-matrices and R-matrices appear

in (3.35) and (3.8) (case V ),

(f.) and the on-shell vector multiplet where the associated L-matrices and R-matrices

appear in (3.38) and (3.8) (case V I).

For later convenience we will refer to these as case I through case V I.

Before the reduction procedure that reveals the matrices, the multiplets describe four

1D, N = 4 theories. The matrices associated with each multiplet in the cases of I, III

and V (the off-shell representations) share some common features. They all satisfy the

equations

( L
I
)i

̂ (R
J
)̂

k + (L
J
)i

̂ (R
I
)̂

k = 2 δ
IJ
δi

k ,

(R
J
)ı̂

j ( L
I
)j

k̂ + (R
I
)ı̂

j ( L
J
)j

k̂ = 2 δ
IJ
δı̂

k̂ . (3.39)

(R
I
)̂

k δik = (L
I
)i

k̂ δ
̂k̂
, (3.40)

which we have named as the “GR(d, N ) Algebras” or “Garden Algebras.” Here the indices

have ranges that correspond to I, J, etc. = 1, . . . , N , i, j, etc. = 1, . . . , dL, and ı̂, ̂, etc.

= 1, . . . , dR for some integers N , dL, and dR.

Throughout most previous discussions, there has only been consideration of the case

where dL = dR = d. In this case, the L-matrices and R-matrices may be assembled

according to

γ
I

=

[
0 L

I

R
I

0

]
(3.41)
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and we may introduce one additional 2d × 2d matrix (−1)F where

(−1)F =

[
I 0

0 − I

]
. (3.42)

Thus, due to (3.39), the γ
I
’s together with (−1)F satisfy the Clifford Algebra Cl(N + 1)

over the reals.

However, the case where dL 6= dR (i.e. cases II, IV and V I), can also be considered.

In this more general case, the matrices may be described as belonging to a mathematical

structure denoated by the symbol GR(dL, dR, N ). In the case of on-shell theories, it is

the case that dL 6= dR so in order to extend the discussion of the previous works to the

on-shell cases, we will have to consider GR(dL, dR, N ) matrices for the on-shell theories

as well as the Double Tensor Multiplet. We should add that since we have not studied

GR(dL, dR, N ), its precise nature is not understood. However, calculations involving this

structure will be presented in an appendix.

4 Considering some traces

As we have seen from the discussions of the previous sections, each supersymmetrical mul-

tiplet has an associated set of L-matrices and R-matrices that are revealed upon reduction

on a 0-brane. In general, however, these matrices do not have to be square. What we

have shown is that that when the supermultiplet is off-shell, the matrices will be square.

A question that might be interesting to consider is, “For a given multiplet, how unique are

such matrices?”

Clearly, to obtain the matrices, we have made many arbitrary choices along the way.

So the uniqueness question can also be cast in as the following form. Let us begin with the

assumption that there exists two sets (linearly independent of one another) of real matrices

such that L
I
and L̂

I
that satisfy1

L
I
(L

I
)t = (L

I
)tL

I
= I , L̂

I
(L̂

I
)t = (L̂

I
)tL̂

I
= I . (4.1)

L
I
(L

J
)t + L

J
(L

I
)t = 0 , (L̂

I
)tL̂

J
+ (L̂

J
)tL̂

I
= 0 . (4.2)

We say that L
I
and L̂

I
are members of the same equivalence class if there exists real square

matrices X and Y such that

L̂
I

= X L
I
Y (4.3)

and where

X (X )t = (X )t X = Y (Y)t = (Y)t Y = I . (4.4)

1No summations over indices are implied for the equations in (4.1).
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These last equations imply that X is an element of the O(dL) group while Y is an element

of the O(dR) group.2 Using (4.3), we next observe that

L̂
I
(L̂

J
)t = X [ L

I
(L

J
)t ] (X )t ,

(L̂
I
)tL̂

J
= (Y)t [ (L

I
)tL

J
]Y ,

(4.5)

or on taking traces we see

Tr
[
L̂

I
1
(L̂

J
1
)t
]

= Tr
[
L

I
1
(L

J
1
)t
]

,

Tr
[
(L̂

I
1
)tL̂

J
1

]
= Tr

[
(L

I
1
)tL

J
1

]
.

(4.6)

This property is shared by more general expressions of the form

ϕ(p)
I
1

J
1
...Ip Jp

= Tr
[
L

I
1
(L

J
1
)t · · · L

Ip
(L

Jp
)t
]

,

ϕ̃(p)
I
1

J
1
...Ip Jp

= Tr
[
(L

I
1
)tL

J
1
· · · (L

Ip
)tL

Jp

]
.

(4.7)

We note that for the present case under consideration, we will not consider p > 2. Fur-

thermore, using the cyclicity of the trace operation we have

ϕ̃(p)
I
1

J
1
...Ip Jp

= ϕ(p)
J
1

I
2
...Jp I

1
. (4.8)

The collection of all such objects shares some of the properties of characters as for groups.

Due to the identities in (4.5) the value of these objects is independent of the linear field

redefinitions that leave a quadratic super-invariant (see [17]) unchanged. We will call these

“chromocharacters” because their values still depend on the choices made to describe the

supersymmetry generators. So these objects still depend on how the colors in an Adinkra

are picked.

Since we have derived the L-matrices and R-matrices for six distinct cases, I, II, III,

IV , V , and V I (as delineated in above equation (3.39)), we will denote the distinct cases

by including a roman numeral after the symbol for the chromocharacter. Our calculations

reveal
ϕ(1)

I J
(I) = 4 δ

I J
,

ϕ(1)
IJ

(II) = 2 δ
I J

,

ϕ(1)
IJ

(III) = 4 δ
I J

,

ϕ(1)
IJ

(IV ) = 6 δ
I J

,

ϕ(1)
IJ

(V ) = 4 δ
I J

,

ϕ(1)
IJ

(V I) = 3 δ
I J

.

(4.9)

2The curious reader may well ask, “Why are these groups relevant?” Some insight into this comes

from the work of [17]. There it was shown that for valise Adinkras, it is always possible to construct a

supersymmetrical invariant that is quadratic in the fields of the Adinkra. There are a large set of linear field

redefinitions that do not mix bosons and fermions, under which this supersymmetrical invariant remains

unchanged. The O(dL) and O(dR) groups are related to these symmetries.
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The behavior of the p = 2 chromocharacters is very different for the off-shell cases (I, II,

V ) versus on-shell cases (II, IV , V I). We present the off-shell cases first:

ϕ(2)
IJKL

(I) = 4
[
δ
I J
δ
KL

− δ
IK
δ
JL

+ δ
I L
δ
JK

+ ǫ
IJKL

]
,

ϕ(2)
IJKL

(III) = 4
[
δ
I J
δ
KL

− δ
IK
δ
JL

+ δ
I L
δ
JK

− ǫ
IJKL

]
,

ϕ(2)
IJKL

(V ) = 4
[
δ
I J
δ
KL

− δ
IK
δ
JL

+ δ
I L
δ
JK

− ǫ
IJKL

]
.

(4.10)

One of the striking features of these results is their correlation with an issue about the

construction of 4D, N = 2 supermultiplets from 4D, N = 1 supermultiplets. In particular,

the pattern of the signs of the coefficients multiplying the ǫ-tensors is quite revealing.

The off-shell chiral multiplet sign (χ
0
(I) = +1) is opposite to that of the off-shell tensor

multiplet (χ
0
(III) = -1) and off-shell vector multiplet (χ

0
(V ) = -1) signs.

An off-shell 4D, N = 1 chiral multiplet may be combined with an off-shell 4D, N =

1 tensor multiplet to form an off-shell 4D, N = 2 tensor multiplet. An off-shell 4D, N =

1 chiral multiplet may be combined with an off-shell 4D, N = 1 vector multiplet to form

an off-shell 4D, N = 2 vector multiplet. However, an off-shell 4D, N = 1 tensor multiplet

when combined with a 4D, N = 1 vector multiplet forms the so-called ‘Vector-Tensor’

Multiplet [19]. The Vector-Tensor Multiplet is not an off-shell 4D, N = 2 representation.

The statement above may be confusing to some of our readers. So let us make clear what

we are saying.

The work of [9] implies something that seems to have escaped the general notice of

the community familiar with this class of problems. These works in the middle nineties

showed that for all values of N , but only in 1D, it is possible to find supermultiplets that

have the properties of:

(a.) no off-shell central charges,

(b.) no use of equations of motion, and

(c.) no infinite sets of auxiliary fields.

In other words, the off-shell problem is solved in 1D. Since all the work of the related to

the Adinkra/Garden Algebra investigations rests on these fundamental observations, all

these studies are within the assumptions (a.), (b.) and (c.) immediately above. Within

these restrictions the statement above about the Vector-Tensor Multiplet is correct.

We suspect that this failure on the part of the Vector-Tensor Multiplet to form an

off-shell 4D, N = 2 representation is related to the values of χ
0

for the two 4D, N = 1

supermultiplets.

We are led to make some conjectures:

For all off-shell 4D, N = 1 multiplets, the p = 1 chromocharacters take the form

ϕ(1)
IJ

= d δ
IJ

, (4.11)

where 2d is the number of bosonic plus fermionic degrees of freedom minus gauge degrees

of freedom.
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For all off-shell 4D, N = 1 multiplets, the p = 2 chromocharacters take the form

ϕ(2)
IJKL

= d
[
δ
I J
δ
KL

− δ
IK
δ
JL

+ δ
I L
δ
JK

]
+ χ

0
ǫ
IJKL

, (4.12)

where χ
0
is a true character for classifying the representations of 4D, N = 1 supersymmetry.

It is interesting to also note that this character distinguishes between the 2D, N = 2 chiral

multiplet versus the twisted chiral multiplet.

Since in the cases of the on-shell chiral multiplet and the on-shell vector multiplet the

second line of (3.39) is not satisfied, and also since for the case of the double tensor multiplet

neither equation of (3.39) is satisfied, we relegate the calculations of the replacements of

these equations to appendix B. Using the results from this appendix we find

ϕ(2)
IJKL

(II) = 2 δ
IJ
δ
KL

+ 2 [σ1 ⊗ σ2 ]
IJ

[σ1 ⊗ σ2 ]
KL

,

ϕ(2)
IJKL

(IV ) = 6 δ
IJ
δ
KL

+ 4 [σ3 ⊗ σ3 ]
IJ

[σ3 ⊗ σ3 ]
KL

+

+ 6 [σ1 ⊗ σ2 ]
IJ

[σ1 ⊗ σ2 ]
KL

+ 4 [σ2 ⊗ σ1 ]
IJ

[σ2 ⊗ σ1 ]
KL

+ 4 [σ3 ⊗ σ1 ]
IJ

[σ3 ⊗ σ1 ]
KL

+ 4 [ I ⊗ σ2 ]
IJ

[ I ⊗ σ2 ]
KL

+ 4 [σ1 ⊗ I ]
IJ

[σ1 ⊗ I ]
KL

+ 4 [σ2 ⊗ σ3 ]
IJ

[σ2 ⊗ σ3 ]
KL

ϕ(2)
IJKL

(V I) = 2 δ
IJ
δ
KL

+ 2 [ I ⊗ σ2 ]
IJ

[ I ⊗ σ2 ]
KL

+ 2 [σ2 ⊗ I ]
IJ

[σ2 ⊗ I ]
KL

+ 2 [σ2 ⊗ σ1 ]
IJ

[σ2 ⊗ σ1 ]
KL

.

(4.13)

The forms of the p = 2 chromocharacters in the even cases may seem very different from

those in the odd cases. But in fact there are similarities.

These similarities become obvious with the use of the generators of the SO(4) rotation

group. The six generators of SO(4) can be denoted by i [α1]
IJ

, i [α2]
IJ

, i [α3]
IJ

, i [β1]
IJ

,

i [β2]
IJ

, and i [β3]
IJ

where

[α1]
IJ

= [σ2 ⊗ σ1]
IJ
, [α2]

IJ
= [I ⊗ σ2]

IJ
, [α3]

IJ
= [σ2 ⊗ σ3]

IJ
,

[β1]
IJ

= [σ1 ⊗ σ2]
IJ
, [β2]

IJ
= [σ2 ⊗ I]

IJ
, [β3]

IJ
= [σ3 ⊗ σ2]

IJ
,

(4.14)

and these correspond to the fact that locally SO(4) = SU(2) × SU(2).

In terms of these, the results in (4.10) take the forms

ϕ(2)
IJKL

(I) = 4
[
δ
I J
δ
KL

+ [~β]
IJ
· [~β]

KL

]
,

ϕ(2)
IJKL

(III) = 4
[
δ
I J
δ
KL

+ [~α]
IJ
· [~α]

KL

]
,

ϕ(2)
IJKL

(V ) = 4
[
δ
I J
δ
KL

+ [~α]
IJ
· [~α]

KL

]
,

(4.15)

and (4.13) becomes

ϕ(2)
IJKL

(II) = 2 δ
IJ
δ
KL

+ 2 [β1 ]
IJ

[β1 ]
KL

,

ϕ(2)
IJKL

(IV ) = 6 δ
IJ
δ
KL

+ 6 [β1 ]
IJ

[β1 ]
KL

+ 4 [ ~α β1 ]
IJ

· [ ~α β1 ]
KL

+ 4 [ ~α ]
IJ

· [ ~α ]
KL

ϕ(2)
IJKL

(V I) = 3 δ
IJ
δ
KL

+ 2 [α2 ]
IJ

[α2 ]
KL

+ 2 [β2 ]
IJ

[β2 ]
KL

+ 2 [α1 ]
IJ

[α1 ]
KL

.

(4.16)
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Thus written, the p = 2 chromocharacters for the off-shell theories are seen to have

the form of terms dependent on tensor products of the 4 × 4 identity matrix plus terms

that are tensor products in other 4 × 4 matrices. We see a nice correlation between the

spin of the 4D fields and the p = 2 chromocharacters. The chiral supermultiplet contained

only Lorentz scalars, and the corresponding chromocharacter depends on the β-generators.

The vector and tensor supermultiplets contained fields that carried one or more Lorentz

vector indices and their chromocharacters depend on the α-generators.

This is the strongest evidence to date that the fourth conjecture made in [10] (though

modified now for our change in conventions) is correct and higher dimensional off-shell

supersymmetric models can be faithfully represented as 1D SUSY models. The spin in-

formation of the higher dimensional theory is apparently carried in the chromocharacters

associated with the 1D models. Only the off-shell models realize SU(2) symmetries by

rotating either the α’s among themselves or the β’s among themselves. We thus make

another conjecture:3

For all off-shell 4D, N = 1 multiplets, all chromocharacters must possess an SU(2) ×

SU(2) symmetry.

There are strong purely algebraic distinctions that must be made between the on-shell

and off-shell cases.

In all off-shell representations, the L-matrices and R-matrices are square. This is a

consequence of having equal numbers of bosonic and fermionic fields in off-shell supersym-

metry representations. The L-matrices and R-matrices satisfy both conditions in (3.39) and

that in (3.40). Consequently in off-shell representations, the L-matrices and R-matrices for

1D, N -extended SUSY models are obtained by a projection of Cl(N + 1). In all off-shell

representations each row or column of the L-matrices and R-matrices, when regarded as

vectors, form an orthonormal basis set of vectors.

Among the on-shell cases, there is also a strong distinction to be made between the II

and V I cases (generic on-shell) and the IV case (“pathogenic” on-shell).

In ‘generic’ on-shell representations, the L-matrices and R-matrices are not square.

This is a consequence of having unequal numbers of bosonic and fermionic fields in on-

shell supersymmetry representations. The L-matrices and R-matrices satisfy only the first

conditions in (3.39) and that in (3.40). In all generic on-shell representations each row or

column of the L-matrices and R-matrices, when regarded as vectors, have unit length.

In ‘pathogenic’ on-shell representations, the L-matrices and R-matrices satisfy only the

conditions in (3.40) but not those in (3.39). The L-matrices and R-matrices are generally

not square. In some ‘pathogenic’ on-shell representations, each row or column of the L-

matrices and R-matrices, when regarded as vectors, do not have unit length.

Though we have not discussed them here, there are special pathogenic on-shell repre-

sentations. Two of the most familiar of these are the 4D, N = 2 Fayet Hypermultiplet [3]

and 4D, N = 2 Vector-Tensor Multiplet. Their L-matrices and R-matrices are square.

However, in these cases, the terms that are the analogs of that given in (2.17) have the

3See appendix D for an expanded discussion.
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property of being dependent on the equations of motion of the bosonic fields in the multi-

plet. In this case, these terms are called “off-shell central charges.” The initial paper on

the Fayet Hypermultiplet introduced such models into the physics literature.

One of our main motivations for including the little known case of the double tensor

multiplet was to show that while in 4D theories may superficially appear very similar, after

reduction on a 0-brane sharp differences can be seen. It is only in the pathogenic case that

the chromocharacters depend on the products of α-matrices times β-matrices. This is also a

distinction to keep in mind when applying Poincaré duality arguments to supersymmetrical

theories. Case V I only differs from case III by the application of a Poincaré duality of

one of the spin-0 fields.

In the next section, we are going to discuss a graphical representation of the results

of the current section. This discussion will include all the multiplets seen so far. It should

be kept in mind that the double-tensor multiplet has many peculiarities and as no off-shell

formulation is known these may not follow the same relations as appear for the other on-

shell representations. So many of the comments made about the on-shell multiplets do no

apply to the double-tensor multiplet. This should be recalled as the reader goes through

the subsequent discussion.

Let us close this section by noting that for the off-shell multiplets, which possess gauge

symmetries, the method of 0-brane reduction used has a preferred basis of working in the

Coulomb gauge A0 = B0 1 = B0 2 = B0 3 = 0 and this is likely a general feature of this

technique.

5 Adinkras from garden algebra matrices

So we have seen from the brief survey of some well-known (and one not well- known) mul-

tiplets how the reduction of a supermultiplet on a 0-brane leads to an algebraic association

between a given supermultiplet and a set of L-matrices and R-matrices. This was one of

the basic observations of [10]. However, Adinkras [11] provide a graphical (and vivid) tool

that is often convenient as a replacement for the Garden Algebra matrices. We refer the

reader to these previous works for detailed explanation of how Adinkras are obtained from

reduction on a 0-brane.

We now present the Adinkras for each of the cases I–V I.
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(5.1)

It is easily seen that the right hand column entries all contain height-two Adinkras.

This is the case for all on-shell theories, as all such theories are valises. The condition

of going on-shell corresponds to the erasure of all nodes and links above the second level.

The problem of classifying all valise representations is solved and leads to the spectrum of

on-shell supersymmetrical theories, a well developed topic in the physics literature.

Going beyond on-shell theories and valises requires Adinkras of greater height, as

these describe off-shell representations. For a fixed value of N , the maximum height of an

Adinkra that realizes N -extended supersymmetry is given by max. height = N + 1. In

the discussion of this paper,4 max. height = 5. Using a slight modification of the argument

given in [17], it can be proven that no height-5 Adinkra can possess dynamics defined by

an action quadratic in the fields of the Adinkra. At height-4, there are known to be two

dynamical theories. The most familiar is the complex linear multiplet [20], which will be

discussed in a work [21] that is the companion to this paper. Also at height-4, there is

the matter gravitino multiplet [22] and some forms of supergravity. The height-3 Adinkras

correspond to the familiar off-shell chiral multiplet, the off-shell vector multiplet, and the

minimal off-shell supergravity multiplet as the most familiar representatives. The only

known off-shell height-2 Adinkra corresponds to the tensor multiplet we have seen in our

earlier discussion.

4It must be understood that N refers to the world-line supersymmetries. Thus for four dimensional the-

ories with eN -extended supersymmetry, N = 4 eN . A theory with simple supersymmetry in four dimensions

requires N = 4 on the world-line.
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The discussion above also points toward future studies that need to be undertaken to

find the Adinkraic representations for all 4D, N = 1 off-shell multiplets. For example, there

are many ‘variant’ representations [23] that are known to exist. The case of supergravity

and matter gravitino multiplets will have more information on how higher spin manifests

itself at the layers of Adinkras.

5.1 The adinkra transformation group

With Adinkras in hand, there is the possibility to give simplified discussions of some aspects

of GR(d, N ) formulations. One such issue that is much simplified is that of changing the

basis of the representation. Adinkras may be regarded as playing a role similar to Feynman

graphs and providing a tool to replace matrix manipulations. To illustrate this, we return

to the chiral multiplet and the vector multiplet. From the work of the third section, we

have for the chiral multiplet and for the vector multiplet Adinkras given by the following

respective images.

(5.2)

(5.3)

Using ‘root superfields’ [10], it is possible to write algebraic expressions for each of these.

However, we will eschew such a path and pursue a graphical route to understand the reasons
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for the different values of χ
0

for the two multiplets. This will provide a graph-theoretical

basis for this distinction.

For the work of the DFGHILM collaboration, a graphical piece of software (the Adinkra-

mat — see acknowledgments) was developed for the investigation and manipulation of

Adinkras. Using this, one can ‘evolve’ a given Adinkra into another. The second Adinkra

is related to the first by a change of basis and other operations such as ‘node raising’ and

‘node lowering.’ Below we will use the Adinkramat to cast the chiral Adinkra into a valise

using a maximally symmetric basis. This is shown in the following sequence of operations.5

(5.4)

Let us describe the sequence of operations:

(a.) In the first of these, the identity map is applied. Horizontal translations of Adinkra

nodes only describe the identity map, unless the horizontal ordering of nodes is

changed.

(b.) The second operation is a ‘node-lowering’ one. The exponent of the F -node in the

corresponding root superfield is increased by one unit. Also an element of OB(4)

that exchanges the second and third bosonic nodes was used. Here, the B subscript

denotes the O(4) group that acts on bosonic nodes.

(c.) The third operation is an identity map.

(d.) The fourth operation is a ‘node-lowering’ one. The exponent of the G-node in the

corresponding root superfield is increased by one unit. Also an element of OB(4) that

exchanges the third and fourth bosonic nodes was used.

(e.) The fifth operation is an element of OB(4) that changes the sign of the third and

fourth bosonic nodes.

5For the benefit of the reader following closely, there is an appendix in which the Adinkra manipulation

and standard column and row operations are compared side by side.
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A similar sequence of operations may be carried out on the vector multiplet Adinkra using

the following sequence of operations.

(5.5)

We again describe the sequence of operations:

(a.) In the first of these, the identity map is applied.

(b.) The second operation is an element of OF (4) that exchanges the the second and

third fermionic nodes. Here, the F subscript denotes the O(4) that acts on fermionic

nodes.

(c.) The third operation is a ‘node-lowering’ one. The exponent of the d-node in the

corresponding root superfield is increased by one unit.

(d.) The fourth operation is an element of OF (4) that changes the signs of the third and

fourth fermionic nodes.

(e.) In the fifth operation, elements of OB(4) and OF (4) are used to exchange the location

of the first and third bosonic nodes as well as the location of the first and third

fermionic nodes. Moreover, some signs were changed.

(f.) The sixth operation is an element of OB(4) and OF (4) that exchanges the first and

second bosonic nodes along with the first and second fermionic nodes.

Thus, under the action of the OB(4) and OF (4) groups described in (4.3) along with

the node-raising and node-lowering group noted for root superfields, we find it possible

to implement the following transformations on the Chiral Multiplet and Vector Multiplet
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Adinkras.

(5.6)

The Adinkras on the right hand side of (5.6) can be used to ‘read off’6 the L-matrices

associated with each Valise. The L-matrices associated with the uppermost Valise Adinkra

are simply

( L1 ) = I4 , ( L2 ) = i σ3 ⊗ σ2 , ( L3 ) = i σ2 ⊗ I2 , ( L4 ) = − i σ1 ⊗ σ2 , (5.7)

and L-matrices associated with the lowermost Valise Adinkra are simply

( L1 ) = I4 , ( L2 ) = i σ3 ⊗ σ2 , ( L3 ) = − i σ2 ⊗ I2 , ( L4 ) = − i σ1 ⊗ σ2 . (5.8)

It can be shown that the chromocharacters associated with these matrices agree with those

in (4.11) and (4.15). Also it can be shown there exists a sequence of Adinkra manipulations

that take the Tensor Multiplet Adinkra into the lowermost Valise Adinkra.

At first it may seem puzzling that the two Valise Adinkras above can give different

chromocharacters. In fact, there is a very small distinction between the two images. It is

seen that all the solid orange lines in the first are replaced by dashed orange lines in the

second (and vice-versa). This is reflected in the differences in the signs of the L3 matrices

in (5.7) and (5.8). All other colors and dashing match up perfectly. It is apparent that χ
0

is

keeping track of this property of the Adinkras! This property of the Adinkra is correlated

with 4D fields that carried vector indices versus those without such indices.

It may also seem puzzling that both sets of matrices in (5.7) and (5.8) are linearly

related to only the β-matrices in (4.14). This is due to a very special element that exists

among the X and Y matrices. It can be shown

∆α
I

= β
I
∆ , (∆)2 = I4 , (5.9)

6See the third appendix also.
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where

∆ =
1

2

[
I4 − ~α · ~β

]
. (5.10)

Thus, by choice of X and Y, the α’s can be ‘traded’ for the β’s and vice-versa.

Finally, the when matrices in (5.7) and (5.8) are written explicitly, it can be shown

that they are far more symmetrical than the corresponding matrices in (3.6) and (3.19).

In general, were we to randomly lower the upper nodes in the off-shell height-3 Adinkras

shown in (5.1), the resultant height-2 Adinkra would appear quite ‘cluttered’ to the eye.

On the other hand, the Adinkras in (5.6) appear quite orderly. It is very satisfying to

note that the more symmetrical the matrices, the more symmetrical the Adinkras appear.

In fact, the basis used in the Adinkras shown in (5.6) is a maximally symmetrical basis.

Calculations are often simpler using such bases.

6 Comparisons to known results

The Adinkra which appears in the upper left of the diagram numbered as equation (5.6) has

been named the (2, 4, 2) representation of 1D, N = 4 supersymmetry (e.g. see the works

of [24]). In a similar manner, the Adinkra which appears in the lower left of the diagram

numbered as equation (5.6) has been named the (3, 4, 1) representation of 1D, N = 4

supersymmetry. Adinkras have the property that when ‘flipped’ about a horizontal axis

through the Adinkra there results in a new Adinkra that also describes a supermultiplet.

Applying this ‘flipping’ operation to the (3, 4, 1) representation results in a (1, 4, 3)

representations. Although these representations have been given these names in the works

of [24], these representations have been known to one of the current authors (SJG) since

the presentation of the formula (58) in the work of [10].

The possibility to change the height of nodes (although not expressed using this lan-

guage) was first discovered in 1994 and shortly thereafter presented in the literature [25].

Later taking advantage of this possibility, the concept of the “root superfield” was intro-

duced [10]. The original definition of this concept7 was an expression containing exponents

whose values determine the height at which nodes appear in a corresponding Adinkra. Our

explicit reduction of the component fields of a 4D, N = 1 chiral multiplet yields a (2, 4,

2) (see also [10]). The reduction of the component fields of a 4D, N = 1 vector multiplet

yields a (3, 4, 1).

We do not see how the analyses in [24] capture a critical point. If there were a unique

1D, N = 4 valise (a (4, 4, 0) or root in their conventions), then by raising one node, it

could be turned into a (3, 4, 1). Or if two nodes of a unique 1D, N = 4 valise were raised,

it would turn into a (2, 4, 2). Thus, if one made the assumption of a unique 1D, N = 4

valise, then its two distinct raised-node relatives must be the dimensional reduction of the

component fields of a 4D, N = 1 vector multiplet and the dimensional reduction of the

component fields of a 4D, N = 1 chiral scalar multiplet respectively.

7Other authors [26] while retaining the terminology of ‘root multiplet’, have changed the meaning of the

term to only refer to valise Adinkras and associated superfields.
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Instead what our calculations show is that the dimensional reduction of the component

fields of a 4D, N = 1 chiral scalar multiplet leads to the Adinkra on the upper left hand

side of the image numbered as equation (5.6) in this current paper. While the dimensional

reduction of the component fields of a 4D, N = 1 vector multiplet leads to the Adinkra on

the lower left hand side of the image numbered as equation (5.6) in the current paper.

The Adinkras on the right hand side of (5.6) are distinct, there are no field redefinitions

or rearrangements of the bosons among themselves (and the same for the fermions) which

will map one of these Adinkras into the other. The degeneracy of the (4,4,0) representa-

tion (and corresponding node lifts) is difficult to see in the analyses of [24]. In fact, the

distinction between the two valises is reflected in the distinct values found for χ
0

and is

exactly the distinction between chiral and twisted chiral multiplets known in 2D, N = 2

theories. This result had been surmised in other work by the DFGHILM collaboration.

The calculations in this paper are the first to prove this is the case and shows the value

of why explicit calculations need to be performed to support the many conjectures made

solely by looking at the 1D structure of these theories.

One other matter we will attempt to make clear for our readers what is the meaning

of root superfields, as originally defined in [10] and how are these related to higher 4D,

N = 1 representations. The original meaning of a root multiplet or root superfield is that

this term refers to set of distinct ordinary superfields that form part of a web obtained by

raising and lowering nodes. Thus the complete root superfield associated with the upper

part of the diagram in equation (5.6) takes the form

(6.1)
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and this diagram explicitly shows the transformations

(4, 4, 0)c → (3, 4, 1)c → (2, 4, 2)c → (1, 4, 3)c → (0, 4, 4)c . (6.2)

In a similar manner the complete root superfield associated with the lower part of the

diagram in equation (5.6) takes the form

(6.3)

and this diagram explicitly shows the transformations

(4, 4, 0)t → (3, 4, 1)t → (2, 4, 2)t → (1, 4, 3)t → (0, 4, 4)t . (6.4)

The works of [27] show that there is an exclusion principle-like nature to lifting these

multiplets to 4D. One can only ‘oxidize’ the (2, 4, 2)c to become a 4D, N = 1 chiral

scalar multiplet and one can only ‘oxidize’ the (3, 4, 1)t to become a 4D, N = 1 vector

multiplet. This sort of behavior is what was anticipated in [11]. Only a very limited

number of representations in the lower dimension can be oxidized among members of a

root superfield. The only ambiguity found is one that amounts to a re-definition of the

relation of which of two right hand Adinkras in (5.6) is chosen as a starting point.

7 Conclusion

In this present work, there has been presented a survey of features that occur in the

study of embedding 4D, N = 1 supersymmetrical systems into the context of Adinkras
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and Garden Algebras. We have explicitly demonstrated that off-shell supersymmetrical

multiplets lead, upon reduction on 0-branes, to a universal algebraic structure described

by (3.39) and (3.40) that we refer to as defining a mathematical structure denoted by

GR(d, N ). On the other hand, we have shown that on-shell theories typically lead to an

algebraic characterization in terms of GR(dL, dR, N ).

The structures we have discussed allow for a completely algebraic characterization

of “The Fundamental Supersymmetry Challenge” (see final work in [9]). The 0-brane

reduction of all supersymmetrical theories (including all ten and eleven dimensional ones)

is conceptually no different from the exercises undertaken in the third section for the

on-shell chiral multiplet (equations (2.4)–(2.6) and (3.11)–(3.13)) and vector multiplets

(equations (2.21)–(2.23) and (3.37)–(3.38)). Thus, ten and eleven dimensional on-shell

supersymmetrical multiplets possess derivable GR(dL, dR, N ) representations in terms of

L-matrices and R-matrices similar to those in (3.12), (3.13), and (3.38). In the case of

the on-shell chiral and vector multiplets, their L-matrices and R-matrices ((3.12), (3.13),

and (3.38)) can be embedded into the L-matrices and R-matrices ((3.6), (3.9), and (3.34))

of the off-shell chiral and vector multiplets.

We can thus state the first part of the fundamental supersymmetry challenge solely as

a algebraic problem: ‘When can a given representation of GR(dL, dR, N ) be embedded

into GR(d, N )? The answer to this question may hold a key to obtaining some interesting

results.

With regard to GR(d, N ) versus GR(dL, dR, N ), we have been able to advance the

state-of-the-art understanding. From the part of our survey comparing off-shell versus on-

shell multiplets, we have found that when viewed from the perspective of one dimension,

the main difference between them lies in regard to a chiral SU(2) × SU(2) theory. Off-shell

theories possess full invariance with regard to all of the chiral SU(2) × SU(2) group, while

on-shell theories possess symmetry only with respect to a broken sub-group.

The two Adinkras in (5.6) show a remarkable resemblance to the cis-trans isomerism

well known in chemistry. Specifically in fact, we can refer to the uppermost Adinkra as the

4D, N = 1 cis-Valise8 and the second Adinkra as the 4D, N = 1 trans-Valise. We believe

these are to 4D, N = 1 representation theory as quarks and anti-quarks are to SU(3).

However, we know from the current understanding of the work of the DFGHILM

collaboration, that the analogs of higher N studies show an incredible proliferation of

representations that valise Adinkras produce. This rich spectrum of representations is

more reminiscent of biology and genetics instead of the representation theory normally

seen in physics. Because of this, we have been influenced in our studies by genomics

in particular. From this vantage point, it would perhaps be appropriate to refer to the

cis-Valise and trans-Valise as ‘genes.’

This leads us to a final conjectures:

The cis-Valise and trans-Valise are the fundamental 4D, N = 1 genes from which all

off-shell 4D, N = 1 supersymmetry representations can be derived.

8In recognition that the sign of the ǫ-term is the same as the first term in the expression this is appro-

priate.
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Should this conjecture be true, it implies that for the genetic classification of all 4D,

N = 1 supersymmetry representations, at least the two integers nt and nc (which give the

number of trans-Valises and cis-Valises contained in a general representation) are required.

In a number of presentations by one of the authors (SJG), the expression, ‘the DNA of

Reality,’ has been used. Our current work provides the most detailed explanation to date

for why this may be more than merely metaphorical.

“My methods are really methods of working and thinking; this is why they

have crept in everywhere anonymously.” - Emmy Noether

Note Added. After the conclusion of this work, two papers have appeared on the arXiv

which provide some specific examples of how Adinkras via the Garden Algebras provide a

1D holographic description of 4D, N = 1 supermultiplets. These works can be found in

papers cited as [27].
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A Conventions for gamma matrices

Our conventions for the four dimensional discussion are such that we use real four compo-

nent spinors (when their indices are in an up position). Our choice of Minkowski metric is

the ‘mostly plus metric.’

We use the outer product to write our 4 x 4 matrices in terms of 2 x 2 matrices. If M

and N are two such matrices where

M =

(
m11 m12

m21 m22

)
, N =

(
n11 n12

n21 n22

)
(A.1)
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then we choose our conventions so that

M ⊗N =




m11

(
n11 n12

n21 n22

)
m12

(
n11 n12

n21 n22

)

m21

(
n11 n12

n21 n22

)
m22

(
n11 n12

n21 n22

)




=




m11n11 m11n12

m11n21 m11n22

m12n11 m12n12

m12n21 m12n22

m21n11 m21n12

m21n21 m21n22

m22n11 m22n12

m22n21 m22n22


 . (A.2)

In this notation, the four dimensional gamma matrices we use are defined by

(γ0)a
b = i(σ3 ⊗ σ2)a

b , (γ1)a
b = (I2 ⊗ σ1)a

b ,

(γ2)a
b = (σ2 ⊗ σ2)a

b , (γ3)a
b = (I2 ⊗ σ3)a

b . (A.3)

which can all be seen to be purely imaginary. The corresponding gamma-5 matrix is

given by

(γ5)a
b = −(σ1 ⊗ σ2)a

b . (A.4)

Some useful Identities then follow

γµ γν + γν γµ = 2 ηµ ν I4 , γµ γµ = 4 I4 , γµ γα γµ = − 2 γα ,

γ5 [ γα , γβ ] = − i
1

2
ǫα β µ ν [ γµ , γν ] , γµ [ γα , γβ ] γµ = 0 ,

γµ [ γα , γβ ] = 2 [ ηµ α γβ − ηµ β γα ] + i 2 ǫα βµ νγ5γν ,

[ γα , γβ ] γµ = − 2 [ ηµ α γβ − ηµ β γα ] + i 2 ǫα βµ νγ5γν . (A.5)

In order to raise and lower spinor indices, we define a spinor metric by

Cab ≡ −i(σ3 ⊗ σ2)ab =




0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


 → Cab = −Cba . (A.6)

The inverse spinor metric is defined by the condition CabCac = δc
b.

The second rank anti-symmetric matrix is defined by

(σµν)a
b ≡

i

2
[(γµ)a

c(γν)c
b − (γν)a

c(γµ)c
b] . (A.7)

Next a direct set of calculations show the following properties:

(γµ)a
cCcb = (γµ)b

cCca . (A.8)

(σµν)ab = (σµν)ba , (A.9)

(γ5γ0)a
b = −(σ2 ⊗ I2)a

b ,
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(γ5γ1)a
b = i(σ1 ⊗ σ3)a

b ,

(γ5γ2)a
b = −i(σ3 ⊗ I2)a

b ,

(γ5γ3)a
b = −i(σ1 ⊗ σ1)a

b , (A.10)

(γ5γµ)a
cCcb = −(γ5γµ)b

cCca (A.11)

B GR(dL, dR, N ) closure terms

In the case of the on-shell Chiral Multiplet we find

(R
J
)ı̂

j ( L
I
)j

k̂ + (R
I
)ı̂

j ( L
J
)j

k̂ = δ
IJ

(I)ı̂
k̂ + [ ~αβ1 ]

IJ
· ( ~αβ1 )ı̂

k̂ . (B.1)

in place of the second equation of (3.39).

In the case of the Double Tensor Multiplet we will calculate the left hand sides of both

the first and second equations in (3.39). We find

(L
I
)i

̂ (R
J
)̂

k + (L
J
)i

̂ (R
I
)̂

k = 2 δ
IJ

( I2 ⊗ I3 )i
k − 2 [ ~α β1 ]

IJ
· (σ2 ⊗ ~J )i

k , (B.2)

where in writing this expression, we have introduced the dimensionless generators of spin-1

angular momentum denoted by J1, J2 and J3. We simply note

J1 =




0 0 i

0 0 0

− i 0 0


 , J2 =




0 i 0

− i 0 0

0 0 0


 ,

J3 =




0 0 0

0 0 i

0 − i 0


 . (B.3)

satisfy the commutation relationships

[Ji , Jj ] = i ǫi j kJk . (B.4)

These relations are recognized as those for the usual generators of angular momentum. We

can continue and find the result

(R
J
)ı̂

j ( L
I
)j

k̂ + (R
I
)ı̂

j ( L
J
)j

k̂ = 3 δ
IJ

(I)ı̂
k̂ − [ ~αβ1 ]

IJ
· ( ~αβ1 )ı̂

k̂ , (B.5)

which is very similar to the case of the on-shell chiral multiplet given above (B.1). This

similarity is so striking that one might hope for its universality. All such hopes vanish from

the same calculation in the context of the on-shell Vector Multiplet.

For the second equation in (3.39) evaluated on the Vector Multiplets we find the result

(R
J
)ı̂

j ( L
I
)j

k̂ + (R
I
)ı̂

j ( L
J
)j

k̂ =
3

2
δ
IJ

( I4 )ı̂
k̂ −

1

2
[ ~α β2 ]

IJ
· ( ~α β2 )ı̂

k̂

+
1

2
[ ~α β1 ]

IJ
· ( ~α β1 )ı̂

k̂

+
1

2
[ ~α β3 ]

IJ
· ( ~α β3 )ı̂

k̂ . (B.6)
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Interestingly, these calculations show some general regularities though still to a large degree,

the exact nature of GR(dL, dR, N ) for dL 6= dR remains a mystery.

Aside from the identity matrix common to (B.1), (B.2), (B.5), and (B.6), there is an

interesting similarity of the matrices that do appear on the right sides of the equations.

These matrices that appear in (B.1), (B.2), (B.5), and (B.6), can be expressed in the form

utilizing matrix representations of SU(2) and are characteristic of theories realizing broken

chiral SU(2) × SU(2) symmetries and none of the results in this appendix respect the full

chiral SU(2) × SU(2) symmetry group seen in the off-shell theories.

C A primer on adinkra transformations

In the discussion of section five, the two Adinkras shown in (5.6) were used to generate the

corresponding matrices in (5.7) and (5.8) without explanation of the intervening steps. In

an effort to be as transparent as possible, in this short appendix we present an explanation

on how to read an Adinkra and generate the corresponding matrices.

A large class of the solutions to the conditions in (3.39) and (3.40) have the property

that L-matrices and R-matrices contain rows and columns with:

(a.) each row (when regarded as a vector) is a unit vector,

(b.) each column (when regarded as a vector) is a unit vector, and

(c.) the set of d row-vectors (or column-vectors) is an orthonormal set.

Taken together, these conditions imply the entries in these matrices are equal to +1, 0, or

-1. Our conventions are such that we use solid lines to indicate a value of + 1, a dashed

line to indicate a value of -1 and no line at all to indicate a zero entry. The conditions

in (5.7) and (5.7) require N linearly independent matrices in order for the representation

to be faithful. For this purpose, N distinct colors are used in an Adinkra.

Rather than continue with a recitation of rules, it is easier to begin with a simple

example. The basic N = 2 Adinkra appears as below.

(C.1)

For the purpose of this appendix, we have numbered the white nodes and the black nodes.
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Instead of regarding the white nodes as bosons and the black nodes as fermions, we

can instead think of the white nodes as being associated with the rows in a matrix and the

black nodes as being associated with the columns in a matrix. This is a two-color Adinkra.

So it is necessarily associated with two matrices that we can denote by L1 and L2. We

have a choice on how to associate which matrix with which color so we choose to associate

the green edges with L1 and the red edges with L2.

In order to concentrate on L1, the Adinkra (C.1) may be viewed through a “green-pass”

filter that only allows the green edges to show. Thus we arrive at the image below.

(C.2)

The information contained in this image is a factor of 1 appears in the first row and first

column of the matrix as well as a factor of 1 appears in the second row and second column

of the matrix. In other words this is the identity matrix I2.

In order to concentrate on L2, the Adinkra (C.1) may be viewed through a “red-pass”

filter that only allows the red edges to show. Thus we arrive at the image below.

(C.3)

The information contained in this image is that a factor of 1 appears in the first row and

second column of the matrix as well as a factor of − 1 appears in the second row and first

column of the matrix. In other words this is the matrix i σ2. So the Adinkra in (C.1) is

associated with L1 and L2 via the equation

( L1, L2 ) =
(
I2, iσ

2
)
. (C.4)
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It is notable that with complete fidelity, all the information of the matrices are contained

in the Adinkra. In other words the Adinkra is a faithful representation of these matrices.

In a similar manner, the Adinkra whose image appears immediately below

(C.5)

possesses a ‘green-pass’ filtered image of the form

(C.6)

and possesses a ‘red-pass’ filtered image of the form below.

(C.7)

Clearly, the Adinkra in (C.1) is different from the one in (C.5). So the matrices

associated with the latter cannot be the same as those associated with the former. We will
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denote the matrices associated with the latter by L̂1 and L̂2. By using the same logic that

led to (C.4) we find (
L̂1, L̂2

)
=
(
σ1, σ3

)
. (C.8)

However, there is a visual relation between (C.1) and (C.5). If the two black nodes at the

top of the first Adinkra are exchanged, then Adinkra (C.1) changes into Adinkra (C.5).

Furthermore, it can be verified that the sets of matrices given in (C.4) and (C.8) satisfy

the conditions in (4.1) and (4.2).

In equations (4.3) and (4.4) there were defined matrices X and Y that transform L-

matrices and R-matrices along orbits and define a class structure. It might be possible to

work out the explicit forms of X and Y to relate the matrices in (C.4) to those in (C.8).

It is straightforward calculation to show the required matrices take the forms

X =
k1 I + i k2 σ

2

√
k2
1 + k2

2

, Y =
k1 σ

1 − k2 σ
3

√
k2
1 + k2

2

, (C.9)

where k1 and k2 are arbitrary real parameters. Notice for the choice k2 = 0, this set

of transformation corresponds to the identity map acting on the white nodes and a pure

exchange on the black nodes as was the visual intuition gained by comparing (C.1) to (C.5).

The two matrices in (C.9) effectuate the exchange of the two closed nodes that occur in

the transformation from (C.1) to (C.5).

Two additional N = 2 Adinkras are shown in (C.10).

(C.10)

For the leftmost image, we have
(

L̃1, L̃2

)
=
(
σ3, σ1

)
, (C.11)

and for the rightmost image, there is

(
L1, L2

)
=
(
− I2, i σ

2
)
. (C.12)

One choice of X and Y which relates the first of these to (C.1) is given by X = σ3 and Y

= I2. This effectuates a change of sign to the links attached to the open node at position

2 in the image of (C.1). For the second in (C.10) one set of matrices we see X = −σ3 and
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Y = σ3 will relate it to (C.1). This effectuates a change of sign to the links attached to

the open node at position 1 and a change of sign to the links attached to the open closed

node at position 2.

With a bit of practice, it become very simple to use an Adinkra to generate a corre-

sponding set of matrices. However, the real advantage of Adinkras, used in the work of

the DFGHILM collaboration, is the ability to visually manipulate (using the Adinkramat)

these images to change basis and generally investigate the Garden Algebra matrices.

The Adinkra of (C.1) is also associated with a collection of superfields and spinorial

differential equations that relate them.

D1Φ1 = iΨ1 , D2Φ1 = iΨ2 ,

D1Φ2 = iΨ2 , D2Φ2 = − iΨ1 ,

D1Ψ1 = ∂τΦ1 , D2Ψ1 = − ∂τΦ2 ,

D1Ψ2 = ∂τΦ2 , D2Ψ2 = ∂τΦ1 . (C.13)

Here the bosonic superfields Φ1 and Φ2 are associated with the open nodes # 1 and # 2 at

the lowest level of the Adinkra. The fermionic superfields Ψ1 and Ψ2 are associated with the

closed nodes # 1 and # 2 at the highest level of the Adinkra. The spinorial derivative D1

is associated with green edges and the spinorial derivative D2 is associated with red edges.

The process of “lifting a node” can be shown by first making one local redefinition and

one the non-local redefinition; Φ1 → A, Φ2 → ∂−1
τ F . Due to the second equation, the

field F has a higher engineering dimension than Φ2 and accordingly the node associated

with it is lifted in the Adinkra which can be redrawn as

D1A = iΨ1 , D2A = iΨ2 ,

D1F = i ∂τΨ2 , D2F = − i ∂τΨ1 ,

D1Ψ1 = ∂τA , D2Ψ1 = − F ,

D1Ψ2 = F , D2Ψ2 = ∂τA . (C.14)

The association of one superfield with each node in an Adinkra and the association of each

Adinkra color-edge with a distinct D-operator was implicitly introduced in the work of the

DFGHILM collaboration seen in [17].
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D SU(2) ⊗ SU(2) symmetry and quartic chromocharacters

For convenience of this discussion, let us begin by gathering the quartic chromocharacters

here below

ϕ(2)
I

J

K

L(I) = 4
[
δ

I

Jδ
K

L + [~β]
I

J · [~β]
K

L

]
,

ϕ(2)
I

J

K

L(III) = 4 [ δ
I

Jδ
K

L + [~α]
I

J · [~α]
K

L ] ,

ϕ(2)
I

J

K

L(V ) = 4 [ δ
I

Jδ
K

L + [~α]
I

J · [~α]
K

L ] ,

ϕ(2)
I

J

K

L(II) = 2δ
I

Jδ
K

L + 2[β1]
I

J [β1]
K

L ,

ϕ(2)
I

J

K

L(IV ) = 6δ
I

Jδ
K

L + 6[β1]
I

J [β1]
K

L + 4[~αβ1]
I

J · [~αβ1]
K

L + 4[~α]
I

J · [~α]
K

L

ϕ(2)
I

J

K

L(V I) = 3δ
I

Jδ
K

L + 2[α2]
I

J [α2]
K

L + 2[β2]
I

J [β2]
K

L + 2[α1]
I

J [α1]
K

L , (D.1)

where we have used a Euclidean metric to raise a pair of indices. We next observe the

relations

[
αA , αB

]
= i 2 ǫA B CαC ,

[
βA , βB

]
= i 2 ǫA B CβC ,

[
αA , αB

]
= 0 . (D.2)

These imply that a group element of SU(2) ⊗ SU(2) denoted by G can be written in the

form

[G(u, v)]
I

J =

[
exp

(
i
1

2
uAαA

)
exp

(
i
1

2
vAβA

)]
I

J . (D.3)

We next calculate the following results

[
ϕ(2)

I

J

K

L(I)
]′

= [G(u, v)]
I

R [G(u, v)]
J

Tϕ(2)
R

S

T

U(I)
[
G−1(u, v)

]
S

J

[
G−1(u, v)

]
U

L

= ϕ(2)
I

J

K

L(I) ,
[
ϕ(2)

I

J

K

L(III)
]′

= [G(u, v)]
I

R [G(u, v)]
J

Tϕ(2)
R

S

T

U(III)
[
G−1(u, v)

]
S

J

[
G−1(u, v)

]
U

L

= ϕ(2)
I

J

K

L(III) ,
[
ϕ(2)

I

J

K

L(V )
]′

= [G(u, v)]
I

R [G(u, v)]
J

Tϕ(2)
R

S

T

U(V )
[
G−1(u, v)

]
S

J

[
G−1(u, v)

]
U

L

= ϕ(2)
I

J

K

L(V ) , (D.4)

which show that the quartic chromocharacters associated with the cases I, III, and V ,

possess the full SU(2) ⊗ SU(2) symmetry under the group element defined by (D.3). On

the otherhand, we also see

[
ϕ(2)

I

J

K

L(II)
]′

= 2 δ
I

Jδ
K

L + 2 [ β̃1 ]
I

J [ β̃1 ]
K

L ,
[
ϕ(2)

I

J

K

L(IV )
]′

= 6 δ
I

Jδ
K

L + 6 [ β̃1 ]
I

J [ β̃1 ]
K

L

+ 4 [ ~α β̃1 ]
I

J · [ ~α β̃1 ]
K

L + 4 [ ~α ]
I

J · [ ~α ]
K

L (D.5)
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where

[ β̃1 ]
I

J = [ ei
1

2
vAβA

β1e−i 1

2
vAβA

]
I

J . (D.6)

The results in (D.5) show that the quartic chromocharacters in the cases of II and IV only

possess an SU(2) ⊗ U(1) symmetry.

We may write the transformed final chromocharacter for case-V I in the form

[
ϕ(2)

I

J

K

L(V I)
]′

= 3 δ
I

Jδ
K

L + 2 [ ~α ]
I

J · [ ~α ]
K

L + 2 [ β̃2 ]
I

J [ β̃2 ]
K

L − 2 [ α̃3 ]
I

J [ α̃3 ]
K

L , (D.7)

where

[ α̃3 ]
I

J = [ ei
1

2
uAαA

α3e−i 1

2
uAαA

]
I

J . (D.8)

This proves that at most this chromocharacter possess a U(1) ⊗ U(1) symmetry.
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